2x^2+3x+15+3x^2+x-20=180

Simple and best practice solution for 2x^2+3x+15+3x^2+x-20=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x^2+3x+15+3x^2+x-20=180 equation:



2x^2+3x+15+3x^2+x-20=180
We move all terms to the left:
2x^2+3x+15+3x^2+x-20-(180)=0
We add all the numbers together, and all the variables
5x^2+4x-185=0
a = 5; b = 4; c = -185;
Δ = b2-4ac
Δ = 42-4·5·(-185)
Δ = 3716
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3716}=\sqrt{4*929}=\sqrt{4}*\sqrt{929}=2\sqrt{929}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{929}}{2*5}=\frac{-4-2\sqrt{929}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{929}}{2*5}=\frac{-4+2\sqrt{929}}{10} $

See similar equations:

| (x-4)^2=13 | | 7a+4a=3 | | 2/3x-1/5x=14/15 | | -4n+6=-3n | | −1=b4−7 | | -2(2f-4)=-4(-f+2 | | -13/12-4/3N=-1/3(3n11/4) | | |7x+3|=32 | | -2(2d-4)=-4(-d+2 | | 4/5+5m/3=47/15 | | 2x-1/3=4x=5/7 | | 523.64=200+1.16x | | -11/2m=-9 | | (x-2)(x-5)=28 | | 7/5s+49=11 | | 3n-5=6+5n÷2 | | x/89+(-12)=-14 | | 500+90p=5,000 | | 81x2=7=107 | | 5z=-4-27 | | 81x2+7=107 | | 8x-12+6x+7=5x+8+9x-13 | | 2(4x+2)=4x-12x(x+) | | 3.8x-(-1x9.7x)=2.6+13.3x | | 2(3x+4)-3(x-1)=x- | | 49x^2+84x+48=0 | | (2/x+9)-(9/x-9)=(3x/x^2-81) | | 10+4h=1-5h | | 2a(3a+2)=-8 | | 5/4p=4/3p+3/2 | | X+10-5=8x+13 | | 49x2-8=92 |

Equations solver categories